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The mixing layer bounding the exhaust plume associated with hypersonic high- 
altitude rockets is analysed as a laminar binary mixture of perfect gases with 
Lewis and Prandtl numbers of unity. A far-field approximation to the undis- 
turbed jet core and a Newtonian pressure balance between the jet and ambient 
gases are used to construct the mixing-layer location. Longitudinal pressure 
variations are neglected and resultant errors are evaluated. Boundary conditions 
a t  the edge of the mixing layer are evaluated by streamline tracing to shock 
entry points. The sensitivity of properties in the mixing layer to variations in the 
plume angle of attack, engine nozzle efficiency and engine thrust are examined, 
and an approximate density and thrust scaling of mixing-layer overall properties 
is developed. 

1. Introduction 
An important contribution to the radiation signature of booster rockets a t  high 

altitudes comes from the mixing layer a t  the exhaust-plume boundary between 
the stream and jet gases. Analysis of the radiation in terms of dominant thermal 
and chemical processes must be based on a reasonably accurate fluid-mechanical 
description of the gas flow field in the mixing layer. If the mixing layer is thin 
compared with the plume scale, major simplifications apply to its flow description 
a t  high altitudes, because the vehicle flight Mach number is large ( > 5)  and the 
flow a t  the rocket nozzle exit is highly underexpanded. Hypersonic vehicle 
flight implies that the stream temperature pm and, hence, the stream Mach 
number B, have only a weak influence on plume structure in relatively blunt 
portions of the plume. Highly underexpanded nozzle flow implies that a major 
portion of the plume is relatively blunt, and also that undisturbed jet flow at 
large distances from the nozzle provides a complete description of jet-gas influ- 
ence on plume structure. 

Several approximate models have been proposed for the distant undisturbed 
jet flow of ideal gases from nozzles with uniform exit conditions. Distant flow- 
field properties are described entirely by the local density and nozzle conditions, 
since the local speed has verynearly its maximum value ij,. The distant jet density 
is modelled by an F2 decrease with distance and a functional vibration with the 
polar angle 0 from the nozzle axis. These models are governed by two parameters 
evaluated from mass conservation and either momentum conservation or the exit 
Prandtl-Meyer function. Ashkenas & Sherman ( 1966) modelled the experimental 
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data of Hartmann & Lazarus (1941) and the method of characteristics (MOC) 
solution of Owen & Thornhill (1948) using a variation in density with the 
polar angle 8 as cos20. Their two-parameter model applies in the limit of sonic 
nozzle-exit conditions, Mirels & Mullen (1962) considered a jet density variation 
near the limit Me + co of infinite nozzle-exit Mach number. Their analysis, by 
application of the hypersonic equivalence of Hayes (1947), is based on an 
approximate extension of the description by Sedov (1959) of self-similar expan- 
sions of cylindrical gas clouds into a vacuum. For the cases considered, their 
results are in agreement to within 10% with WOC calculations. For inter- 
mediate values of Me, Alden, Habert & Hill (1963), Albini (1965) and Hubbard 
(1966) have modelled the distant density angular variation as [cos (~0/28~)]~'(7j-l), 
where y j  is the jet specific-heat ratio and 8, is the exit maximum turning angle. 
Boynton (1967) andThomson (1965) showed that this function squaredprovided a 
better fit to the 0 dependence of the density, by comparison with several numerical 
computations. Hill & Draper (1966) obtained good agreement with the numerical 
solutions of Thomson (1965), Altshuler, Moe & Molund (1958) and Sibulkin & 
Gallaher (1963) for a wide variety of nozzle conditions, using the model 

(1.1) i j /& = exp ( - A2p2), 
where is, is the density a t  0 = 0 and /3 = 1 - cos 0. 

Conservation of mass and momentum provides the relations 

(1.2) I kl= &( 1 - CF/CFM) 
and &/j jc = 4B(T*/T)', 

where c, = T/(pc7T?*2), c,, = M i j r n / ( j i C T T * 2 ) ,  

B = [2/(yi + 1)]"(7i-')[A/( l6n)*] [(rj - 1)/(ri + I)]$, 
ijcis the chamber density, T* the throat radius, T the engine vacuum thrust, ??,the 
chamber pressure and i@ the nozzle mass flow rate. 

Boynton (1968) has compared the numerical solutions for undisturbed jet 
expansions from nozzles with and without wall boundary layers. These show that, 
even for the largest booster engines, the nozzle boundary layer has an important 
effect on distant jet flow a t  large angles ( N 90") to the nozzle axis. Boynton ob- 
served that the density variation with 0 is approximately exponential in the 
region of significant boundary-layer influence, and on this basis Simons (1972) 
applied an approximate correction to inviscid flow. 

Radiation observations of high-altitude rocket plumes, reported by Rosenberg 
et al. (1961), prompted the analyses of Thomson & Harshbarger (1961), and later 
Hill & Habert (1963) and Alden & Habert (1964), which showed a dominant high- 
altitude plume scale L, equal to the square root of the engine vacuum thrust 
divided by the stream dynamic pressure. Moran (1967) showed by dimensional 
arguments that, for fixed nozzle geometry and stream and jet specific-heat ratios 
7, and y j ,  the high-altitude, inviscid plume geometry scales with 1. Hill & 
Habert developed axial transverse scaling of plume geometry, based on the blast- 
wave theory of Sedov (1959) and Taylor (1950), as 

where L = (p/gm)*, Q, = $j?,&,, i j ,  is the stream density, ?j, is the vehicle 

_ _ -  
x = Z / L ,  IJ = g/L(D/T)i ,  (1.3) 
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speed and is the plume pressure drag. This scaling was used in developing the 
so-called universal plume model of Jarvinen & Hill (1  970), empirically based 
as well on numerical solutions and flight observations. By a simple but approxi- 
mate momentum balance, the plume drag was related to engine conditions by 
Hill & Habert (1963) by 

= c,,lc,- 1. 

Thus all engine and flight characteristics are contained only in the dimensionless 
plume co-ordinates of (1.3). Blast-wave theory may strictly be applied to jet 
external flow only when outer shock and contact-surface inclinations to the free 
stream are small and shocknormal Mach numbers arelarge, conditions not apply- 
ing to high-altitude plumes; consequently, the validity of the BIT scaling in 
(1.3) is in doubt. Draper & Moran (1973 a )  have shown that this scaling fails when 
D/T is very small. However, this quarter-power dependence of suggests a, 
rather weak influence of nozzle conditions (other than thrust) on inviscid plume 
geometry, and the Jarvinen-Hill model has broad utility in describing both 
scaled simulations and actual high-altitude plumes (see Draper & Moran 1973a, 
3; Jarvinen & Dyner 1969). 

Large stream Mach numbers and large plume dimensions suggest the calcula- 
tion of high-altitude plume contact-surface locations on the basis of a pressure 
balance by the use of the Newtonian approximation for both internal and ex- 
ternal flows. Using the undisturbed jet flow model of Alden et al. (1963), this was 
first done by Alden & Habert (1964), who approximately accounted for centri- 
fugal pressure relief across both inner and outer shock layers by assuming a, 
homogeneous layer between shocks. Albini (1 965) modified this analysis by allow- 
ing separate homogeneous inner and outer shock layers. Hubbard (1966) further 
improved the model by allowing laminar shock layers with the speed assumed 
constant along post-shock streamlines. Using his model for undisturbed jet flow, 
Boynton ( 1967) applied Hubbard’s method, with centrifugal pressure relief 
neglected in the outer shock layer. Hayes & Probstein (1959) and Chernyi (1961) 
reported the observations that Newtonian flow theory provided a better com- 
parison with measured surface pressures on convex surfaces (contact surfaces) 
when outer shock-layer pressure relief was neglected. Draper & Moran (19733) 
followed Hubbard’s method of contact-surface development, but used the Hill- 
Draper (1966) model for undisturbed jet flow; this construction is used in the 
present mixing-layer analysis. A comparison is shown in figure 1 of contact- 
surface locations from the Jarvinen-Hill(l970) model, from Hubbard’s method 
constructed using the undisturbed jet models of Boynton (1967) and Hill & 
Draper (1966), and from the multi-tube numerical solution reported by Boynton. 
All these methods are in reasonable agreement except in the blunt nose region, 
where the Jarvinen-Hill form is significantly different from the others. It is 
noted that, if the others were to account for nozzle boundary-layer effects, they 
would be in closer agreement with the semi-empirical model of Jarvinen & Hill. 

With the assumption of thin shock layers, implied by the Newtonian flow con- 
struction of the inviscid contact surface, it is consistent to formulate the viscous 
mixing-layer flow under the assumption of a thin boundary layer. Considerable 
attention must be given to mixing-layer boundary conditions for a high-altitude 
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FIGURE 1. Comparison of inviscid contact-surface models (A,  B and C) with a numerical 
solution (D). (See Boynton (1967) for A and D, equation (2.3) for B, and Jarvinen & Hill 
(1970) for G . )  7, = 1-22, y, = 1-4, M, = M ,  = 4.0, a = 0. 

plume, since the layer thickness may not be small compared with the shock-layer 
thickness. The formulation of boundary-layer equations in self-similar form for a 
binary mixture of non-reacting perfect gases is well established (Dorrance 
1962). The same formulation applies to thin mixing layers, although the boundary 
conditions and the limitations imposed by self-similarity are different (Green- 
berg 1966). 

Greenberg argued that, with longitudinal pressure gradients, self-similar 
mixing-layer solutions exist only when both gases have the same specific-heat 
ratio and stagnation pressure. These conditions provide a relationship between 
the ratio of velocities across the layer and the ratio of stagnation enthalpies 
across the layer, so that mixing-layer solutions depend only on the pressure 
gradient and the velocity ratio. Casaccio (1963) obtained self-similar solutions 
to mixing-layer equations for a reacting gas, in apparent violation of the restric- 
tions discussed by Greenberg. However, the pressure-gradient term of both 
Greenberg and Casaccio vanishes a t  both edges of the mixing layer, suggesting 
that its influence may be small. This very weak pressure-gradient effect is 
illustrated in Casaccio’s solution, and points to the approximate validity of the 
local self-similarity concept used extensively in boundary-layer analysis (Hayes 
& Probstein 1959). 

Lock (1951) observed that self-similar shear-layer solutions satisfied the three- 
point boundary conditions under an arbitrary transverse displacement as large 
as the layer thickness. Ting (1959) showed that the transverse location was deter- 
mined by applying the transverse momentum equation of the lowest order con- 
taining shear-layer influence on the external flow. Greenberg’s stagnation-region 
solutions show that the dividing stream surface is displaced from the inviscid 
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contact surface by a fraction of the mixing-layer thickness. Consequently, in the 
present work these surfaces are assumed to coincide. The transverse momentum 
equation, however, is retained in the present plume mixing-layer study, because 
the pressure varies strongly across the inner shock layer. 

Concurrent with the plume analyses reviewed above was the development of 
detailed fhite-difference treatments of some or all of the flow regions associated 
with high-altitude plumes. The present state of these efforts is described by the 
recent work of Boynton (1971) and Wilson (1973), who have carried out axi- 
symmetric viscous flow computations, and of Rudman (1973), who has carried 
out three-dimensional inviscid flow computations. The neglect of cross-flow, 
implicit in the present analysis of the inviscid inner shock layer in the plane 
of symmetry for plumes a t  an angle of attack, is supported by Rudman’s 
results. 

In  the present work an analytically and computationally tractable treatment 
of plume mixing layers and shock layers is developed. Local shock-layer proper- 
ties are used as the boundary conditions for the edge of a mixing layer to allow 
the proper description of the mixing layer, even when it occupies a substantial 
fraction of the region between the inner and outer plume shocks. Neglect of the 
longitudinal pressure gradient is shown to be consistent with the flow features 
peculiar to high-altitude plumes. This important simplification relaxes the 
restrictions on self-similarity discussed by Greenberg, and allows Crocco integral 
solutions to simplified forms of the energy and species equations. This treat- 
ment yields very simple forms for important mixing-layer and shock-layer 
properties. 

2. Inviscid contact surface 
This plume mixing-layer analysis applies for axisymmetric flow, and in the 

plane of symmetry when the thrust axis is at an angle of attack a relative to 
flight direction. With the sign convention of figure 2,  the undisturbed jet flow is 
modelled by (1.1) and (1.2) in the plane of symmetry if 8 is replaced by 8 +a. 
The contact surface is constructed by equating the pressures and flow directions 
of the jet and stream gases, and approximating the pressure on both sides by 
Newtonian theory. In the outer flow, centrifugal pressure relief across the shock 
layer is neglected, and the Newtonian pressure is modified to equal the stagnation- 
point value predicted by the constant-density solution of Li & Geiger (1 957) , 

In  the inner flow, Newtonian theory is applied with inclusion of the Busemann 
centrifugal pressure correction to yield 

where a tilde indicates an integration variable. Equations (2 . l ) ,  (2.2) and (1.2) 
provide an ordinary differential equation describing the contact-surface location, 
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FIGURE 2. Plume geometry in tha plane of symmetry. 

which may be reduced, using isentropic nozzle-flow relations and the hypersonic 
scale L, to 

where unbarred lengths are normalized by z, ,8 = 1 - cos (0 +a) ,  R, is the local 
radius of curvature, 

L = A[ 1 + i(rj - 1) M:] [2 (rj - 1) n3 M:]-3 ( 1 + 7; 1 &-2)- l  

and I = exp ( - R 2 P )  sin 8 cos (8- 6) do. L 
The solution to (2.3) is started away from the origin, at a selected small value of 
$ - 4. The contact surface is assumed to have slopes a t  the origin in the plane 
of symmetry of k in +_ +a on the windward and leeward sides, respectively, for 
plumes at an angle of attack. Corresponding starting values for r ,  R,, 8 and q5 
are determined from the geometry and (2.3). Typically, for a starting 0 - 4  of 
10-3 rad, r N 10-6 and R, N 10-3; consequently, the complex contact-surface 
geometry predicted by (2.3) closer to the origin is on so small a scale as to be 
irrelevant for the present study . The contact surface predicted by (2.3) is shown 
in figure 1 to  be in good agreement with the numerical solution reported by Boyn- 
ton (1967). 



Mixing layers for  supersonic jets 159 

3. Mixing-layer equations 
With S as the distance from the source along the contact surface and 3 as 

the distance inward normal to the contact surface, the momentum equations 
along and across the mixing layer take the following forms, after thin-layer 
simplifications: 

p ~ a q a s  + pvaqai-j = - agas + a(p aqaij)/a~j, (3.1) 

ajqaij = -p;li2/B,, ( 3 4  

where .U and ;ii are S and i-j velocity components, respectively, and ji is the vis- 
cosity coefficient. Solutions are sought for the stream function given by 

a$/ag = pur,, a$/as = -pvr,, (3.3) 

which identically satisfies the axisymmetric mass-conservation equation. Note 
that an axisymmetry formulation is valid for plumes a t  an angle of attack in the 
plane of symmetry, if one assumes negligible girth-wise spreading of streamlines 
within the thin shock layers near this plane. Self-similar solutions are sought by 
separation of the variables in 3 as 

(3.4) 
- - 

$ = ms)f(V), u = .UJ(7), 

where the subscript i indicates conditions along the inner edge of the mixing layer. 
Substitution of (3.4) into (3.1) shows 

to be the required form to allow self-similar solutions (Dorrance 1962). With 
this, and the following choice of normalization, 

where Re, = pcoijmL/jZm and the subscript s indicates the outer edge of the mixing 
layer, (3.1) and (3.2) become 

(Cf”)‘+ff” = (aln@s)-l [&,(ap/as) (pu;)-l+ 2f’2aln~,/as], (3.6) 

where C = p,u/ps,u,. Transverse variations in pressure are included in (3.6) and 
(3.7) because large transverse pressure gradients appear in the inviscid treatment 
of the thin inner shocklayer. Contact-surface and post-inner-shock pressures may 
differ by almost an order of magnitude. The viscosity in the outer shock layer is 
assumed to vary linearly with temperature along the edge of the mixing layer and 
about a reference value of 8.5 x kg/ms a t  3000 OK. This assumption allows 
a simple evaluation of 5, since pSps is proportional top,,. The free-stream viscosity 
is not required in the analysis; however, the normalization ,iimMm was chosen to 
identify Nrn and Re dependencies for scaling. Since ji varies more nearly like 
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!i%, this dependence is assumed for the large temperature variations between 
the stream and the shock layer, and the above normalization yields a dimension- 
less viscosity insensitive to flight conditions when M, is large. 

Consistent with the assumption of a thin shock layer, the 5 velocity component 
downstream of the inner shock is approximately ij, cos (0 - $), and does not 
change greatly along shock-layer streamlines. The contact-surface equation (2.3) 
and figure 1 show that 8 - $ is everywhere small. Consequently, ui is nearly con- 
stant throughout the inner shock layer, and the second term on the right-hand 
side of (3.6) may be neglected. Furthermore, if we view the contact-surface pres- 
sure as representative of the mixing layer, ap/as is small for 8 close to an, since 
p has a maximum a t  &T, and also ap/as approaches zero as $ -+ 8. From the 
Newtonian pressure relation, the pressure gradient ap/as is appreciable only 
where sin q5 cos q5 is not small, but from figure 1 or (2.3), one sees that this occurs 
a t  small values of x (i.e. small s). Since the coefficient (alng/as)-lin (3.6)is ofthe 
order of s, we conclude that the entire right side of (3.6) is small over the entire 
mixing layer. Neglect of this term on this basis is peculiar to high-altitude plumes, 
and does not occur when the inner and outer flows have equal stagnation pres- 
sures, as in the studies of Casaccio and Greenberg. Neglect of the right side of 
(3.6) does not make a description of the transverse pressure variation by (3.7) 
unnecessary, since it is required for a description of the state of the gas. 

If the mixing layer is characterized by a binary mixture of non-reacting per- 
fect gases with Lewis and Prandtl numbers of unity, the equations of species 
conservation and energy conservation assume forms similar to the momentum 
equation (Dorrance 1962). The resulting set of differential equations is 

(Cf")'+ f f "  = 0, (Cz')'+ f z '  = 0, (Cg')'+ fg '  = 0, (3.8a, b, c) 

and I7 is the stagnation where z is the mass fraction of jet species, g is 
enthalpy. The boundary conditions a t  the inner and outer edges of the mixing 
layer are, respectively, 

f !  z z  = g .  = zi = 1,  ( 3 . 9 ~ )  
- -  

f,' = E,/Ei, g, = Hs/Hi, z,= 0, (3.9b) 

f = O  a t  q = O .  ( 3 . 9 4  

and to the present order of accuracy, we may assume that 

The energy and species equations have integral solutions of the Crocco type: 

9 = f ' ( l  - 9 m  - f J  + (gs- f ; ) /U - f ; L  ( 3 . 1 0 ~ )  

= cf'-f;)l(l-f:). (3 .10b)  

With the approximation C = constant = 1, the mixing-layer equation (3.8) may 
be solved after the specification of the constant g, and the variable f ; ( s ) ,  obtained 
from analysis of the inviscid flow in the inner and outer shock layers, as shown 
below. Since the shock velocity in the inner shock layer is, to high accuracy, 
qm cos (8 - $) and 8 - $ is everywhere small, a good approximation to the velocity 
across a thin inviscid inner shock layer is ij = ii = iii = ijm cos (8 - $). Unlike 
boundary-layer flow, velocity, species and enthalpy profiles are not necessarily 
coupled in shear layers. Conduction and diffusion may occur in the absence of 
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shear in the mixing layer. In  this case, the Crocco integrals (3 .10a)b)  are not 
useful, since the denominators 1 - fi vanish. Near this limit, it is appropriate to 
replace f by q in (3.8b,c), and also in (3.8a).  All profiles then take on error- 
function forms by the analysis of $ 7 .  

4. Mixing-layer boundary conditions, thermodynamic properties and 
controlling parameters 

The velocity a t  the outer edge of the mixing layer is determined from the local 
pressure, stagnation enthalpy, shock relations and knowledge of where the local 
inviscid streamline crossed the outer shock. The shock crossing location is deter- 
mined from mass conservation and the stream function (3.4). 

( 4 . 1 ~ )  

thus ft = - f (qs)  [8Mm~(q2,Re)-l]*. (4.1 b )  

The integration of (3.8 a)  is begun with an estimate off 2: 4 cos 4/?jmcos (0 - 4); 
then with f(0) = 0 and f ( q i )  = 1, ( 3 . 8 ~ )  is integrated, and qs is determined by a 
specified closeness of approach off' to fi andf" to 0. The associated f(qs) is used 
with (4.lb) to determine the shock crossing point for this streamline. Shock 
relations are applied a t  Po to determine the post-shock pressure and density: 

p"2, = ( y m  + 1) (ym - 11-l [I  + 2(ym - 1)-1 (M: sin2$)-1]-1, ( 4 . 2 ~ )  

fjBS = 4(ym + 1)-1 sin26. (4.2b) 

The local density ps is determined from (4.2), isentropic flow along the inviscid 
streamline, and the known local pressure ps  from (3.7). From the known stagna- 
tion enthalpy, local density and local pressure, one calculates us and hence fi. 
With this new f:, ( 3 . 8 ~ )  is solved again, and the procedure is repeated until 
acceptable convergence is attained. A solution of (3.8 a )  immediately yields 
solutions to (3 .8b ,  c), as shown in (3.10a, b).  

The complete state of the gas is determined from solutions for p ,  f', g and z 
with the perfect-gas relation. Thus, in dimensionless form, 

( 4 . 3 ~ )  

and p i p  = 4 o 0 2 [ g - f i 2 ~ ~ ~ 2 ( e - 4 ) ] R / c , ,  (4.3b) 

. 

cZ, T]I4 = - f '2 CO$ (e - #) 

where cp = zcpj+(l-z)cpm, H = zRj+( l -z )Rm.  

The temperature and density in the mixing layer are calculated from the dif- 
ference between the stagnation enthalpy and *u2. This procedure becomes in- 
appropriate near the inner edge of the layer, where this difference is very small. 
In  this region, errors in temperature and density may be of the order of unity. 
However, temperatures here are, a t  most, a few hundredths of the stream stag- 
nation and rocket chamber temperatures; consequently, this region is of little 
interest in studies of plume radiation. A proper calculation of the state of the gas 
a t  the inner edge of the mixing layer may be carried out which is similar to the 

F L M  65 I1 
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calculation a t  the outer edge, as described above. Mass conservation between 
streamlines yields 

but from (1.1) and (1.2), (4.4) yields 

(4.5) 

The place 6 where the streamline a t  the inner edge yi of the mixing layer crosses 
the inner shock is determined from (4.5).  The post-shock pressure and density 
are computed from shock relations which are similar to (4.2a, b )  and contain the 
pre-shock density and Mach number and the shock entry angle 8- 6. The pre- 
shock density is obtained from (1.2) and (1.3) in the following dimensionless form: 

A* and A ,  are the nozzle throat and exit areas, respectively. The jet Mach number 
is related to the density by isentropic flow relations as 

(4.7) 

and this is the only appearance of the exit density. From the post-shock pressure 
and density, the computed pressure a t  the inner edge of the mixing layer and the 
isentropic flow along inviscid streamlines, the density and temperature at the 
mixing-layer edge are calculated. From these and the known stagnation enthalpy, 
the velocity a t  the inner edge is calculated. This completes the proper calcula- 
tion of the state of the gas a t  the inner edge of the mixing layer. Since ui is 
determined, it is a simple matter to use it to re-evaluate f i  and repeat the 
above iterative solution for the mixing layer; this is done in the present work. 
Since ui is very close to qm cos (0 - $), no iteration on the value of ui is required. 

The solution in the plane of symmetry for the mixing layer of a high-altitude 
plume at a small angle of attack is seen above to depend on the following dimen- 

qm = qm/qm3 gs = gml& Re = P ~ ~ ~ @ L ,  
pe = pe/ji,  (for (4.7) only). 

Inversion from 3, y co-ordinates to s, y co-ordinates is achieved using the rela- 
tions (3.5). In  hypersonic flight, the M, dependence is weak, and the solution for 
the mixing layer depends primarily on the nozzle geometry, the stream- and 
jet-gas compositions, the angle of attack, qm/qm and Re. 

5. Inviscid layer analysis 
Equations (4.1) and (4.5) may be used with streamline and shock-layer rela- 

tions to  generate the complete inviscid portions of the outer and inner shock 
layers, respectively. The outer-layer analysis proceeds from the outer edge of 
the mixing layer by differentiation of (4.1) with respect to 7: 

dP; = - [8Mm s(qHRe)-lI*f'(r) d r .  (5.1) 
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Since f'(qs) has been determined as discussed above, this provides the finite- 
difference form for a change in Po,  for a specified change in 7.  At the new 
7 = ~ $ + h q ,  the velocity u and hence f ' ( q  SAY) are determined by the method 
discussed above, the local pressure p(7 +AT) being determined from (3.7). Re- 
peated use of this procedure generates the shock-layer solution to Po = r,,, which 
defines the local shock location. At the shock, the local pressure computed from 
(3.7) will be larger than that computed from shock relations with a shock inclina- 
tion angle $. This results because centrifugal pressure relief was neglected in the 
outer shock layer in the computation of pcs. A reasonable estimate of the local 
outer-shock slope may be obtained by selecting that slope which yields a post- 
shock pressure in agreement with (3.7). A completely analogous procedure applies 
to the inviscid portion of the inner shock layer, when (4.5) is used instead of 
(4.1). These solutions have not been carried out since they do not relate to the 
mixing layer. Mixing-layer boundary conditions are determined by solving in- 
viscid layer equations along only one outer and one inner shock-layer streamline, 
as discussed above. 

Local shock values off(7) are determined directly from (4.1) and (4.5) by re- 
placing Po by ro and by 0. These stream-function values are useful as indications 
of the relative thickness of the inviscid shock layers and the mixing layer. From 
the outer-flow stream function ( 4 . l a )  the ratio of the mass of stream gas en- 
trained in the mixing layer to that entrained within the outer shock is simply 

( 5 . 2 ~ )  

Similarly, from (4.4) the ratio of the mass of jet gas entrained in the mixing layer 
to that entrained within the inner shock is 

w * 2 i  = f(7i)MTZi).  (5.2b) 

Solutions across the inviscid portions of the shock layers would complete the 
information necessary to test overall momentum conservation in the present 
analysis. Since momentum conservationisused in theinviscid analysis to generate 
(2.3), one may expect momentum to be very nearly conserved after the inclusion 
of a viscous mixing layer. It can be shown that overall mass and energy con- 
servation is achieved exactly in the present formulation. 

6. Further simplification 

assumptions have been used above to eliminate higher-order terms: 
In  addition to frequent use of the assumption of thin shock layers, the following 

M2, % I, M2,sinz$ + ~ ~ - 1 ,  JI$sinz(B-+) 9 yj-I. (6.1) 

Further simplification would result if cos (0 - $) were replaced by unity. This 
would reduce the integral in (2.3) to a complementary error function, and simplify 
(4.3a, b )  and the evaluation of us. Although this was not done, i t  would have intro- 
duced errors in state properties of less than 5%. 

11-2 
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7. Solution along the dividing stream surface 
With the allowed neglect of the pressure-gradient term in the momentum 

equation, the Crocco-type integral relations ( 3 .  IOa, b )  apply. Numerical solutions 
to  (3 .8a ,  b, c) for the broadest range of plausible boundary conditions for high- 
altitude plumes show that the surface z = & lies very close to  the dividing 
stream surface 7 = 0. Since here temperatures are relatively high because of 
conduction and viscous dissipation, and since here, also, the product z( 1 - z )  is a 
maximum, one may expect that  the dividing stream surface is representative 
of the maximum reactivity for binary processes involving jet and stream gas 
species, Since this is a stream surface, non-equilibrium processes may be analysed 
most easily here. The state of the gas is determined simply with the assumption 
z = + a t  7 = 0, from (3 .10 )  and ( 3 . 7 ) .  

f;, = + ( I  +fiL go = & ( I  +g,L Po = P C S ,  (7 .1 )  

where the subscript zero indicates the dividing stream surface. The solution for 
the state a t  7 = 0 is completed by ( 4 . 3 a ,  b ) .  

The outer-edge boundary condition fi may be determined approximately with- 
out solving the mixing-layer equations. An error-function approximation to  
f’ results formally from the replacement of (3 .8  a )  by 

where 5 apply to rf: 7, respectively. Edge boundary conditions (7 -+ 5 co) yield 

f;,= & ( I + f s ’ ) ,  f: = (l-f;)(2n)-h ( 7 . 4 a ,  b)  

and integration of (7 .3 )  yields 

f s  =fh,+(l  --f3 (2n)-*. (7 .4  c )  

If t,he mixing layer is terminated a t  a small value E of the ratio 

this defines the outer edge vS of the mixing layer. The associated f,, from ( 7 . 4 c ) ,  
is used with ( 4 . 1 )  to  determine fg’, as discussed above, withp, replaced bypc,q with 
good accuracy. 

It is noted that ( 7 . 4 a )  agrees with the assumption that z = & at 7 = 0, which 
yielded ( 7 . 1 ) .  The above analysis thus provides an approximate, but consistent 
and complete description of the thermodynamic state on the dividing streamline, 
without solution of the mixing-layer equations. 

8. Flow in the blunt nose region 
Flow in the forwardmost portion of the mixing layer a t  high altitudes is com- 

plicated by a variety of phenomena, including some of the following: (a )  nozzle 
boundary layers, ( 6 )  clustered nozzles, (c) vehicle shocks, ( d )  separated flow 
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caused by the 'corner' between the vehicle and the plume, and ( e )  rarefaction 
on the scale of the vehicle length. Inclusion of all the relevant phenomena would 
be extremely difficult, and inclusion of only some may not be meaningful. Their 
effects on the mixing layer may be important up to distances away from the nozzle 
of the order of the vehicle length. Over the altitude range between second-stage 
ignition and engine cut-off, the ratio of vehicle length to plume scale varies 
typically from 10-1 to 10-3. At a normalized distance from the nozzle of the 
contact-surface inclination angle $, from (2.3), is typically less than 70"; there- 
fore, a detailed description of the plume mixing layer in the stagnation region 
($ 'V 90") is unwarranted because of the above-mentioned disturbing influences. 

9. Mixing-layer stability 
I n  the forward region of the plume, where the contact-surface curvature is 

largest, the inviscid flow in the inner shock layer has a higher density and velo- 
city than the adjacent flow in the outer shock layer. Since the inner flow is on the 
convex side of the contact surface, this surface is unstable. The mixing layer 
introduces a stabilizing influence, and the ratio of the mixing-layer thickness to 
the shock-layer thickness increases with increasing contact-surface curvature 
(i.e. decreasing r ) .  The stability of the flow across this mixing layer has not been 
examined, and may have an important bearing on the applicability of all exist- 
ing mixing-layer analyses. 

10. Results 
Errors introduced by the neglect of longitudinal pressure variations are 

greatest at intermediate values of 8, since the pressure gradient vanishes in the 
limits 8 -+ &r and 8 --f 0. The magnitude of these errors is shown by comparing a 
solution in which the pressure-gradient term, assumed constant (local similarity), 
was retained in (3.6) with a solution with the right side of (3.6) set to zero. This 
comparison is shown in figure 3 for engine and flight conditions representative 
of a large booster a t  an altitude above 100 km. The largest differences occur in the 
mixing layer near 8 = 30"; and the largest difference a t  8 = 30°, shown in figure 
3, corresponds to an error in temperature of the order of 10 % of the nozzle cham- 
ber temperature. Figure 3 illustrates that the surface z = & is close to the dividing 
stream surface 7 = 0, a conclusion which is based on numerical results for a wide 
variety of boundary conditions. 

Engine and flight conditions for a large booster operating a t  an altitude of 
100 km are given in table 1. For such a large booster, one may expect a relatively 
thin mixing layer over the major portion of the plume. This is shown from the 
mixing-layer solution presented in figures 4-7. The ratio of the mass of jet gas 
entrained in the mixing layer to that contained in the shock layer and the equiva- 
lent ratio for the stream gas are shown in figure 4, as a function of polar angle, 
where gs = 7i = 3.0. These ratios are small everywhere except a t  large 8 ( > 60"). 
For 8 > 70", the computed mixing-layer thicknesses exceed the shock-layer 
thicknesses, indicating the onset of failure of the describing approximations. The 
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FIGURE 3. Order of error in mixing-layer properties from neglect of longitudinal pressure 
gradient (solid line), relative to properties calculated including this term (broken line). 
f,' = 0.49, g8 = 0.36, Z, = 0. 

Engine characteristics 
Input 

Flight characteristics 
Input 

Vacuum thrust 5.15 x 106 N Stream specific ratio 1.4 
Jet  specific-heat ratio 1.25 Stream temperature 210 O K  

Exit Mach number 3.93 Stream molecular 29 amu 
Exit temperature 141 1 OK weight 
Jet  molecular weight 13.1 amu Stream density 4.97 x 10-7 kg/m3 
Exit density 1-86 x kg/m3 Vehicle speed 3-0 x 10% m/s 

Angle of attack 0 

Computed Computed 

Exit speed 4.16 x lo3 m/s Stream Mach number 10.3 
Jet  maximum speed 5-12 x lo3 m/s Stream stagnation 4-71 x lo6 m2/s2 
Jet  stagnation 1.31 x lo7 m2/s2 enthalpy 

D/T 0.171 temperature 
enthalpy Stream stagnation 4670 O K  

L = 1 . 5 2 ~  lo3 m Reynolds number = 1.72 x 105 

TABLE 1. High-altitude operating conditions for a large booster 
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I I t 1 I I I I l o  
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6 (deg) 

FIGURE 4. Shock energy angles for mixing-layer outer (gs) and inner (gi) edge streamlines, 
and outer ( f s / f z s )  and inner (fiifii) mass entrainment ratios, as a function of angle 0 from 
the jet axis. See table 1 for the operating conditions. Re = 1.72 x lo5. 

Mixing-layer co-ordinates 

8 70 65 60 55 50 

r 3.3 x 10-3 8.3 x 10-3 1.9 x 10-2 3.8 x 7.3 x 1 0 - 2  

8 45 40 35 30 25 

r 3.1 x 10-l 2.2 x 10-1 3.5 x 10-1 5.4 x 10-1 8.3 x 10-1 

table in figure 4, however, shows that the spatial extent of this fully viscous 
nose region is less than 6m; furthermore, the solution does not apply in this 
negligibly small region for the additional reasons given in Q 8. Also shown in figure 
4, as a function of the mixing-layer station 8, are the shock entry points, in polar 
co-ordinates, for streamlines a t  the outer and inner edges of the mixing layer. 
The closeness of Os and O4 to 8 a t  large 8 again implies relatively large mixing 
layers. It is interesting to note that the shock entry angles for streamlines a t  the 
mixing-layer edge at 8 = 25” are about 45”. Thus, although the mixing layer is 
quite thin here (mass entrainment ratios of 0-195 and 0-067), inviscid stagnation 
streamline conditions would provide a very poor approximation to  the outer- 
edge boundary conditions. The large Reynolds number in this example shows 
that the above statement applies in all cases where the mixing layer is laminar. 

Velocity components U in the s direction are given in figure 5 ,  us. the polar 
angle 8. The notation for U from top to bottom is as follows: ‘post-inner shock’, 
‘inner mixing-layer edge ’, ‘dividing streamline ’, ‘ post-outer shock’, ‘outer 
mixing-layer edge’ and, finally, the value associated with the outer side of an 
inviscid contact surface, i.e. ‘stagnation streamline ’. The dividing-streamline 
velocity Ti,, is, from (7.1), the arithmetic mean of U, and Ui. The outer-edge 
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FIGURE 5. Velocity components ii parallel to the mixing layer at five locations across the 
shock layers and mixing layer, and the velocity along the outer side of an inviscid contact 
surface, all as a function of angle 0 from the jet axis. See table 1 for the operating conditions. 
f f m  = 5.124 krnls, qm = 3.0 kmls. 

1000 - 

I0 65 60 55 50 45 40 35 30 25 

0 (deg) 

FIGURE 6. Temperature associated with the velocities in figure 5 .  
Tm = 210 OK, To = 4140 OK, Te = 1411 O K .  

velocityii, is seen to differ significantly from the velocityii,, on the inviscidstagna- 
tion streamline, thus illustrating further the inapplicability of Tics as the outer- 
edge boundary condition, even at large Re. The closeness of the values of ljm, 
u2, and ii, support the statement that  the velocities in inviscid portions of the 
jet are everywhere nearly constant and equal to ?jm. 

Temperatures are presented as functions of the polar angle 8 in figure 6, with 
the same subscript notation as in figure 5. Temperatures vary significantly 
across inviscid portions of the inner shock layer, but these variations are small 
compared with dividing-streamline temperatures To. Significant differences 
between post-outer-shock temperatures and those a t  the mixing-layer edge 

- 
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70 65 60 55 50 45 40 35 30 25 

Angle from jet axis, 0 (deg) 

FIGURE 7. (a) Density ratios across outer and inner shocks and ( b )  densities associated with 
the velocities in figure 5. p ,  = 4.97 x lo-' kg/ms, pe = 1.86 x kg/m3. 

are noted, and inviscid temperatures on the outer stagnation streamline bear 
little relationship to mixing-layer temperatures, 

The densities presented in figure 7 have relatively high values in the inviscid 
portions of the inner shock layer and increase between the shock and the mixing- 
layer inner edge. Although jet densities, through dynamic pressures, are required 
in the construction of the mixing-layer location (2.3), the inner shock-layer den- 
sities contribute very weakly to the subsequent calculation of dividing-stream- 
line properties, only through the calculation of the small variation between u2i 
and ui. Outer shock-layer densities are seen to be more representative of mixing- 
layer densities. Neither outer nor inner shock density ratios are as large as their 
strong-shock values of 6 and 9, respectively, shown in figure 7. For this reason, 
the Mach number dependencies were retained in the equations for the shock 
density ratio; however, it is again stressed that retention of jet Mach number 
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FIGURE 8. (a) Windward and leeward mixing-layer locations in the plane of symmetry, 
in a wind-axis co-ordinate system (2, yo) for an angle of attack a = 7.5", compared with 
the locations for a = 0. Flight conditions are as in table 1 ,  except for the following: 
T ,  = 234 "K, p ,  = 2.12 x lo-' kg/m3, ij, = 2.6 km/s, Ttw = 3600°K, M ,  = 8.5, 
Re = 1.23 x lo5 and = 2.68 km. The yo co-ordinate is tho normalized cross-wind co- 
ordinate and the x co-ordinate is the normalized wind-axis co-ordinate. ( b )  Densities 
and temperatures To along dividing streamlines associated with these mixing layers. 

dependence and, hence, introduction of the nozzle-exit density, has a negligible 
effect on properties in the mixing layer. 

The effects of the angle of' attack a (between thrust axis and wind axis) on the 
mixing-layer location and properties are shown in figure 8. Engine and flight 
conditions in this example are as shown in table 1, except for the differences in 
flight conditions listed in figure 8. Windward and leeward mixing-layer (contact- 
surface) locations for a = 7.5" are compared with the location for a = 0. The 
associated temperatures and densities along the dividing streamlines are also 
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FIGURE 9. (a) Mixing-layer locations with thrust and chamber conditions constant for three 
values of nozzle-exit Mach number Me.  Re = 1-72 x lo5, = 1.52 km. See table 1 for flight 
characteristics and table 2 for engine characteristics. ( b )  Densities &, and temperature Po 
along dividing streamlines associated with these mixing layers. 

shownin figure 8, vs. the normalizedwind-axis co-ordinate. Differences of the order 
of 250 O K  between windward and leeward mixing-layer temperatures are pre- 
dicted for distances up to 1.0 km from the nozzle exit. This would cause strong 
differences in chemical and radiative processes, whose rates contain exponential 
temperature dependencies, even for this small and representative angle of attack. 
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M , = 2  M 6 = 4  M e =  6 

Vacuum thrust 5.15 x lo6 N Exit temperature 2760 1380 754 
Jet molecular weight 13.1 amu Exit density 0.27 0.017 0-0015 

J e t  maximum speed 5.12 x lo3 m/s Exit speed (m/s) 
Jet  stagnation 1-31 x lo7 m2/s2 DiT 0.443 0.166 0.082 

(kg/m3) 
2.96 x lo3 4.19 x lo3 4 6 4  x lo3 

enthalpy 
L = 1.52 x lo3 m Reynolds number = 1.72 x lo5 

TABLE 2. Engine characteristics for varying nozzle efficiencies 

2500 r 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1 

X 

9 

FIGURE 10. Dividing-streamline temperatures To as functions of normalized wind-axis 
co-ordinate z at two thrust levels. (a) = 5.15 x lo6 N, L = 1.52 x lo3 m, Re = 1.72 x lo5. 
( b )  T = 5.0 x lo4 N, E = 1.49 x lo2 m, Re = 1.69 x lo4. Other operating conditions are 
given in table 1.  

Plume mixing-layer locations are shown in figure 9 for three values of the 
nozzle-exit Mach number for the flight conditions given in table 1 and the thrust 
and nozzle chamber conditions given in table 2. This comparison shows a rela- 
tively strong dependence of the plume transverse dimensions upon nozzle effi- 
ciency, with lower efficiencies associated with broader plumes. The associated 
dividing-streamline densities and temperatures in figure 9 show a rather weak 
density dependence and a strong temperature dependence on eBciency. Tem- 
perature differences of 600 O K  are predicted for distances up to  1 km from nozzles 
with exit Mach numbers of 2.0 and 6.0, thus implying a strong dependence of 
chemical and radiative processes in the mixing layer on nozzle efficiency. 

The sensitivity of mixing-layer properties to mixing-layer thickness was tested 
by comparing the solution for the conditions in table 1 with the solution with 

= 5.0 x 104N and all other conditions the same as in table 1. A reduction in 
thrust reduces E and hence Re, as shown in figure 10. The resulting relative thick- 
ening of the mixing layer changes the outer-edge boundary condition fi, as dis- 
cussed in $4. Figure 10 shows that a thrust change of two orders of magnitude 
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causes small changes (less than 70" K) in dividing-streamline temperatures, and 
all other mixing-layer properties undergo correspondingly small changes. 

Insensitivity of mixing-layer intensive properties to T implies insensitivity of 
normalized intensive properties to E ,  and this allows a simple scaling of thrust 
and stream-density influences on overall properties. From figure 10 and the above 
discussion, one may expect this scaling to apply with good accuracy over two 
orders of magnitude in thrust and in stream density. If the thrust and stream 
density are varied, all other conditions being constant, the mixing-layer thick- 
ness [see equations (3.5)] and plume scale vary as 

F oc p , m ,  E oc T3p,+. (10.1) 

Consequently, the volume of the mixing layer varies as 

7 cc 3x2 cc p;@-%. (10.2) 

As an example of scaling of overall properties, the overall rate of progression of 
a two-body process would vary as 

R cc $JGc &T-% (10.3) 

This provides an approximate altitude and thrust scaling relation which applies 
over a very broad range of operating conditions for boosters at  high altitudes. 

11. Summary 
Highly underexpanded exhausts and hypersonic-vehicle Mach numbers 

associated with booster rockets at  high altitudes allow major simplifications in 
the aerodynamic description of the mixing layer between the jet and ambient 
gases. The influence of the vehicle on the plume geometry is neglected; a far- 
field approximate description of the undisturbed jet core is employed; the thin 
mixing layer is centred along the inviscid contact surface, constructed by a 
Newtonian pressure balance between the inner and outer flows; consistent with 
the Newtonian approximation, shock layers are assumed sufficiently thin to 
allow equating of local shock slopes to the contact-surface slope. Mixing-layer 
equations in locally self-similar form for a binary mixture of ideal gases demon- 
strate that the neglect of the longitudinal pressure-gradient term introduces an 
error in temperature of the order of 10 % of the nozzle chamber temperature. 
With the assumption of Lewis and Prandtl numbers of unity, neglect of this 
pressure-gradient term allows Crocco integral solutions of the energy and species 
equations and relaxes certain restrictions on flow conditions for self-similarity 
pointed out by Greenberg. 

The mixing-layer surface where the jet and stream mass concentrations are 
equal almost coincides with the dividing stream surface. Consequently, a simple 
and complete description of the state of the gas along the dividing streamline is 
provided in terms of mixing-Iayer boundary conditions. Boundary conditions are 
determined by (i) streamline tracing from the edges of the mixing layer to shock 
crossing points and (ii) use of shock relations and isentropic flow relations. The 
resulting description provides flow properties across the shock layers at seven 
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stations: pre- and post-inner shock, inner mixing-layer edge, dividing stream- 
line, outer mixing-layer edge, and post- and pre-outer shock. 

The following are the major results of the solutions presented. The speed in 
unmixed jet gas is everywhere very nearly equal to the jet maximum speed. 
Even when a small fraction of the shock-layer gas is entrained in the mixing layer, 
the inviscid velocity on the outer stagnation streamline provides a very poor 
approximation to the boundary condition a t  the outer edge of the mixing layer. 
Inner-shock density ratios are significantly lower than the limiting value of 
(yj + l)/(yi - I), having, however, only a very weak influence on mixing-layer 
properties. Small angles between the thrust and wind axes cause pronounced 
differences between windward and leeward mixing-layer properties. The nozzle 
efficiency has a strong influence on mixing-layer temperatures, and the plume 
scale or plume Reynolds number has a rather weak influence on normalized 
mixing-layer intensive properties. This weak influence allows a simple and ap- 
proximate scaling of mixing-layer overall properties. I n  the example given, the 
overall rate of progression of a two-body process depends on altitude and thrust 
as R cc &F*. It is evident from these studies that, apart from the inviscid con- 
struction of the mixing-layer location and the above volume scaling, mixing-layer 
properties are controlled primarily by stream- and jet-gas molecular properties 
and qm and q,. 
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